



UNIVERSITÀ DEGLI STUDI DELL'AQUILA



DISIM  
Dipartimento di Ingegneria  
e Scienze dell'Informazione  
e Matematica

# Case Studies of Distributed Ledger Technology in Construction and Agriculture

## 7<sup>th</sup> DLT Working Group Meeting 2025

Perugia (Italy) November 27-28, 2025

**Giovanni De Gasperis**  
[giovanni.degasperis@univaq.it](mailto:giovanni.degasperis@univaq.it)

**Sante Dino Facchini**  
[santedino.facchini@univaq.it](mailto:santedino.facchini@univaq.it)

## DLT in IoT scenarios

Distributed Ledger Technologies are emerging as trustworthy infrastructures for real-world Internet of Things systems, ensuring transparency, traceability, and data immutability.

- 1  **Decentralized security** (no single point of failure)
- 2  **Immutable logs** to prevent tampering
- 3  **Cryptographic identity** for devices, improving authentication
- 4  **Decentralized Device Management** secure, distributed device registration

### DLT in IoT

Distributed Ledger Technologies enable decentralized, tamper-proof, and auditable management of data in cyber-physical environments. Beyond financial use, these technologies have matured into enabling infrastructures for digital trust in public administration, engineering, and agriculture.

## Introduction – DLTW 2025

Case Studies of Distributed Ledger Technology in Construction and Agriculture

## Dissemination Work

Two independent case studies that demonstrate the applicability of the technology in distinct operational domains:

1

### **Constructions & Building documentation:**

Building Ledger Dossier (BLD) for digital documentation and seismic-damage mitigation in construction.

2

### **Agriculture:**

IOTA-based smart agriculture system for secure real-time monitoring.

# Applications: Trackability in Constructions – DLTW 2025

Case Studies of Distributed Ledger Technology in Construction and Agriculture

## Practical Application

Distributed and verifiable framework for managing building documentation and post-event reconstruction evidence.

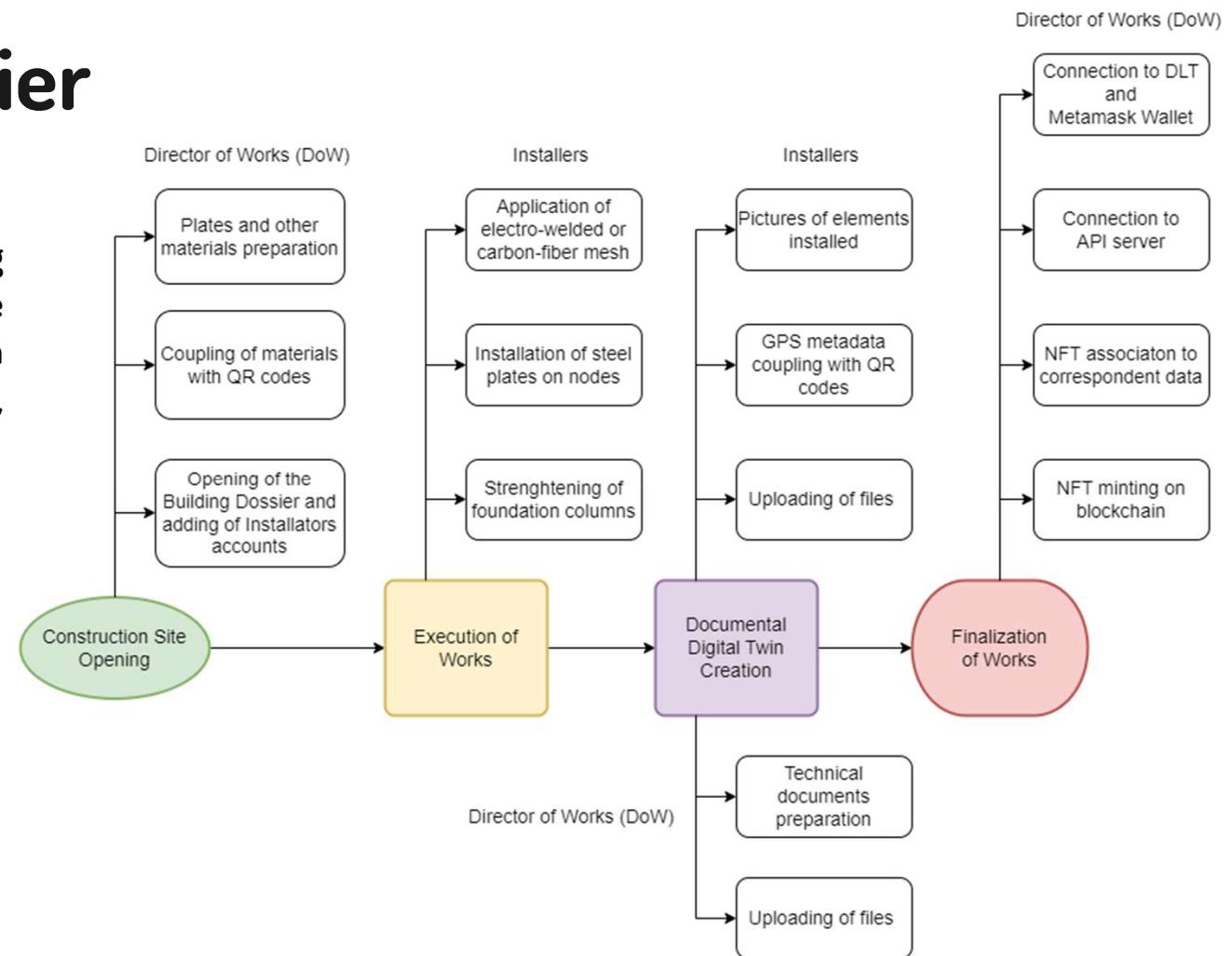


- Digital Twin models, implemented on **OpenSees**, for simulating structural behavior and documenting updates;
- **IPFS** decentralized storage for long-term archival of official documents;
- NFT-based certification to uniquely identify dossiers and related interventions, and visible on **Opensea** public repository;
- **DAO-governed** workflows involving Installers, Engineers, and Directors of Works.



UNIVERSITÀ  
DEGLI STUDI  
DELL'AQUILA



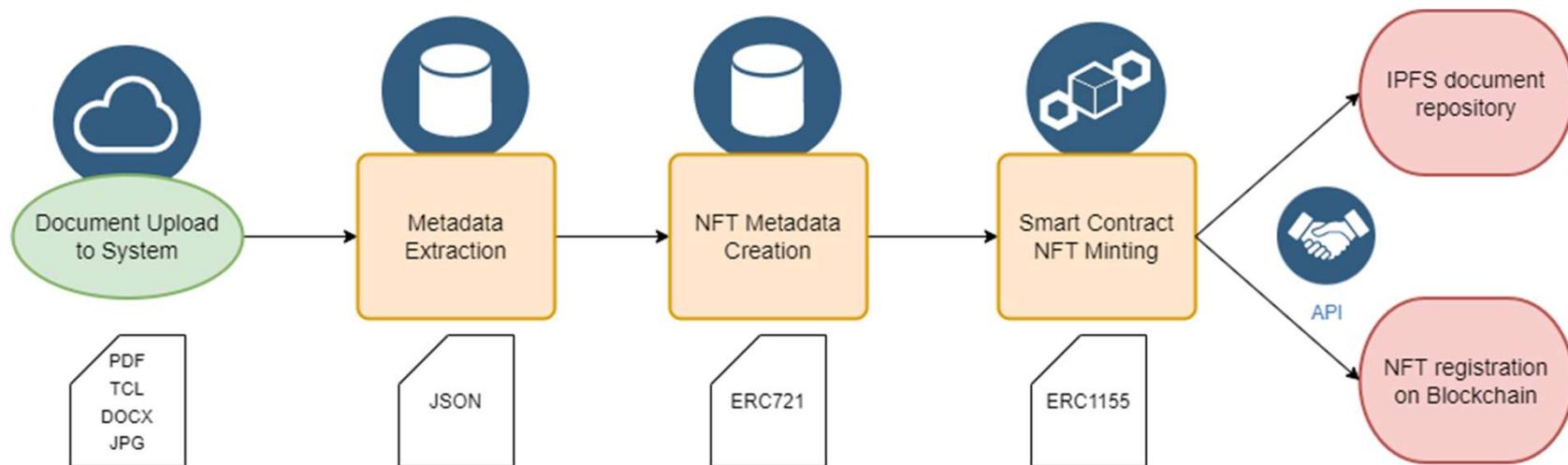

DISIM  
Dipartimento di Ingegneria  
e Scienze dell'Informazione  
e Matematica

# Applications: Trackability in Constructions – DLTW 2025

Case Studies of Distributed Ledger Technology in Construction and Agriculture

## Building Ledger Dossier

G. De Gasperis, S. D. Facchini, A. Saeed, **Building ledger dossier: Case study of seismic damage mitigation and building documentation tracking through a digital twin approach**, Systems 13 (2025)529.




# Applications: Trackability in Constructions – DLTW 2025

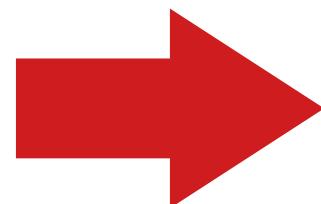
Case Studies of Distributed Ledger Technology in Construction and Agriculture

## Tokenization Progress

Modeling of the tokenization process of Building Dossier's documents.



For each phase is reported the type of document involved and the sub-process (in white) and the medium used (in blue). Once the documents are ready a smart contract provide to interact through API calls with DLT.




# Applications: IoT in Agriculture – DLTW 2025

Case Studies of Distributed Ledger Technology in Construction and Agriculture

## RT monitoring with IOTA

"Monitoring Real-Time Data for Smart Agriculture using IOTA and IoT" (in publication EEE BCCA 2025 proceedings)



High Scalability

High Throughput

Low Latency

Feeless



UNIVERSITÀ  
DEGLI STUDI  
DELL'AQUILA



DISIM  
Dipartimento di Ingegneria  
e Scienze dell'Informazione  
e Matematica

# Applications: IoT in Agriculture – DLTW 2025

Case Studies of Distributed Ledger Technology in Construction and Agriculture

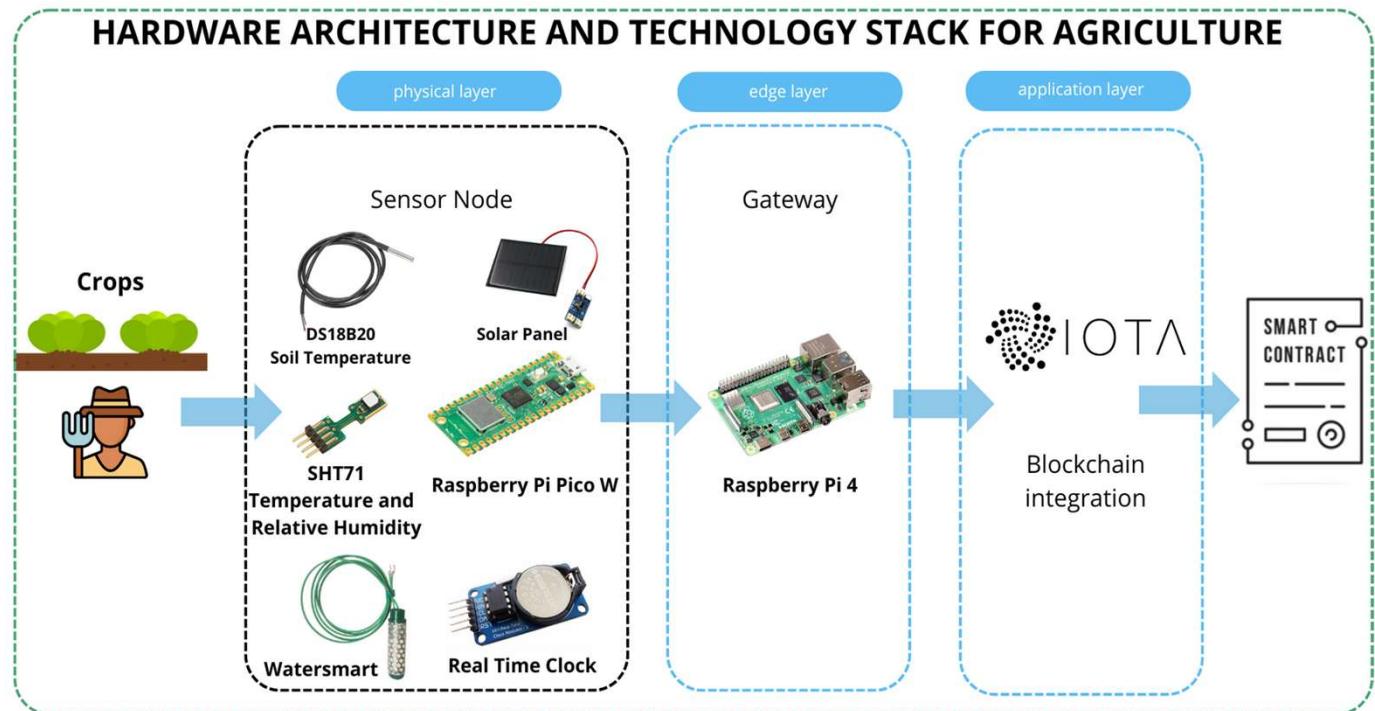
## Why we chose Move

**Security & Formal Verification:** Move provides strong safety through resource-oriented programming, preventing bugs like double-spending or data loss.

**Efficiency & Parallelism:** Move's modular design allows fast, parallel execution of smart contracts, improving IOTA's scalability.


**Asset-Native Model:** Move treats digital assets as first-class objects, fitting perfectly with IOTA's object-based ledger.

**Cross-Chain Interoperability:** Using Move aligns IOTA with other Move-based ecosystems (Aptos, Sui), enabling easier cross-chain decentralized application development.


# Applications: IoT in Agriculture – DLTW 2025

Case Studies of Distributed Ledger Technology in Construction and Agriculture

## Technology Stack



| Component                       | Current (mA) | Voltage (V) | Power (mW) | Description                          |
|---------------------------------|--------------|-------------|------------|--------------------------------------|
| Raspberry Pi Pico W             | 130 - 150    | 3.3         | 429 - 495  | Data transmission                    |
| SHT71 Sensor                    | 0.55 - 1.0   | 3.3         | 1.8 - 3.3  | Brief consumption during measurement |
| DS18B20 Sensor                  | 1.5          | 3.3         | 4.95       | Low consumption per reading          |
| Capacitive Soil Moisture Sensor | 10 - 20      | 3.3         | 33 - 66    | Consumption                          |



UNIVERSITÀ  
DEGLI STUDI  
DELL'AQUILA



DISIM  
Dipartimento di Ingegneria  
e Scienze dell'Informazione  
e Matematica

# Applications: IoT in Agriculture – DLTW 2025

Case Studies of Distributed Ledger Technology in Construction and Agriculture

## Results

| Functions                      | IOTA gas cost | USD gas cost |
|--------------------------------|---------------|--------------|
| log_sensor_data                | .001 IOTA     | 0.00023\$    |
| is_within_range                | .001 IOTA     | 0.00023\$    |
| is_time_in_range               | .001 IOTA     | 0.00023\$    |
| verify_sensor_data_with_ranges | .001 IOTA     | 0.00023\$    |

```
shahid@Shahid:~/dev/Iota/first_package/sources$ python execute_smart_contract.py
Connected to port /dev/ttyACM0. Receiving data...
Data received: Sensor ID: 1; Temperatura ambiente: 20.96 C; Humedad del suelo: 72.00%; Temperatura del suelo: 20.67 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.96 C; Humedad del suelo: 72.00%; Temperatura del suelo: 17.22 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.96 C; Humedad del suelo: 72.00%; Temperatura del suelo: 21.77 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.49 C; Humedad del suelo: 72.00%; Temperatura del suelo: 33.80 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.96 C; Humedad del suelo: 72.00%; Temperatura del suelo: 22.57 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.49 C; Humedad del suelo: 72.00%; Temperatura del suelo: 16.11 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 19.55 C; Humedad del suelo: 72.00%; Temperatura del suelo: 24.88 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.02 C; Humedad del suelo: 72.00%; Temperatura del suelo: 16.53 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.49 C; Humedad del suelo: 72.00%; Temperatura del suelo: 31.83 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.49 C; Humedad del suelo: 72.00%; Temperatura del suelo: 32.86 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.49 C; Humedad del suelo: 72.00%; Temperatura del suelo: 25.53 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.49 C; Humedad del suelo: 72.00%; Temperatura del suelo: 18.76 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 20.49 C; Humedad del suelo: 72.00%; Temperatura del suelo: 29.23 C
Sensor data logged successfully!
Data received: Sensor ID: 1; Temperatura ambiente: 21.43 C; Humedad del suelo: 72.00%; Temperatura del suelo: 30.74 C
```

| Type            | Activity Details    | Activity With       | Gas Fee                      | Age    |
|-----------------|---------------------|---------------------|------------------------------|--------|
| log_sensor_data | 95THY4pB***Ajmk7U21 | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 8m  |
| log_sensor_data | 3hXVsZf***DsQrpXbA  | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 9m  |
| log_sensor_data | Dc2UvCrK***Zq48ySds | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 10m |
| log_sensor_data | 6FUmshbQ***n4kM1tMh | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 11m |
| log_sensor_data | Aoww2i4Y***xXtnDYY  | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 12m |
| log_sensor_data | 9tLAhVHG***XpFhAjQ1 | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 13m |
| log_sensor_data | 28Crk9Bx***dPjwduu2 | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 14m |
| log_sensor_data | 2EYhHwK7***80MmQ75P | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 15m |
| log_sensor_data | HkhyAerJ***hMBUVQpd | 0xb8f5a3***acb29acc | 0.001 IOTA<br>1,000,000 NANO | 1h 16m |



UNIVERSITÀ DEGLI STUDI DELL'AQUILA



**DISIM**  
Dipartimento di Ingegneria  
e Scienze dell'Informazione  
e Matematica

# Case Studies of Distributed Ledger Technology in Construction and Agriculture

Thanks for you Attention!

**DLT Workshop 2025**

Perugia (Italy) November 27-28, 2025

**Giovanni De Gasperis**

[giovanni.degasperis@univaq.it](mailto:giovanni.degasperis@univaq.it)

**Sante Dino Facchini**

[santedino.facchini@graduate.univaq.it](mailto:santedino.facchini@graduate.univaq.it)